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EXECUTIVE SUMMARY
Water is essential to the progress of human societies. 
It is required for a healthy environment and a thriving 
economy. Food production, electricity generation, and 
manufacturing, among other things, all depend on it. 

However, many decision-makers lack the technical 
expertise to fully understand hydrological information. 
In response to growing concerns from the private sector 
and other actors about water availability, water quality, 
climate change, and increasing demand, WRI applied the 
composite index approach as a robust communication tool 
to translate hydrological data into intuitive indicators of 
water-related risks. 

This technical note serves as the main reference for the 
updated Aqueduct™ water risk framework, in which we 
combine 13 water risk indicators—including quantity, 
quality, and reputational risks—into a composite overall 
water risk score. The main audience for this technical note 
includes users of the Aqueduct tool, for whom the short 
descriptions on the tool and in the metadata document are 
insufficient. 

This technical note lays out the design of the Aqueduct 
water risk framework, explains how various data sources 
are transformed into water risk indicators, and covers 
how the indicators are aggregated into composite scores. 
This document does not explore the differences with the 
previous version.
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The resulting database and online tools enable compari-
son of water-related risks across large geographies to 
identify regions or assets deserving of closer attention. 
Aqueduct 3.0 introduces an updated water risk framework 
and new and improved indicators. It also features dif-
ferent hydrological sub-basins. We introduce indicators 
based on a new hydrological model that now features (1) 
integrated water supply and demand, (2) surface water 
and groundwater modeling, (3) higher spatial resolution, 
and (4) a monthly time series that enables the provision of 
monthly scores for selected indicators.  

Key elements of Aqueduct, such as overall water risk, can-
not be directly measured and therefore are not validated. 
Aqueduct remains primarily a prioritization tool and 
should be augmented by local and regional deep dives. 

INTRODUCTION
Background
WRI’s Aqueduct™ information platform compiles 
advances in hydrological modeling, remotely sensed data, 
and published data sets into a freely accessible online 
platform. 

Since its inception in 2011, the Aqueduct information 
platform has informed companies, governments, and non-
governmental organizations (NGOs) about water-related 
risks. Since then, the data have been updated regularly, 
making them comparable on a global scale and accessible 
to decision-makers worldwide.  The Aqueduct information 
platform contains the following online tools:

▪▪ Aqueduct Water Risk Atlas

▪▪ Aqueduct Food

▪▪ Aqueduct Floods

▪▪ Aqueduct Country Rankings 

This technical note covers the development of the Aque-
duct 3.0 framework and database and serves as the basis 
of the This technical note covers the development of the 
Aqueduct 3.0 framework and serves as the basis of the 
updated Aqueduct Water Risk Atlas online tool.

The updated framework, database, and associated tools 
improve one of the most widely used and respected water 
risk frameworks. By leveraging years of experience apply-
ing the previous versions and including the latest high-
resolution hydrological data sets, we are able to provide a 
significant update.  

Structure and Scope of This Technical Note
This technical note will first introduce the updated 
water risk framework (Chapter 1). Many indicators in the 
framework are based on a new global hydrological model, 
which is covered in Chapter 2. In Chapter 3, we describe 
how each of the 13 global water risk indicators is calcu-
lated and mapped to a consistent 0–5 scale. Chapter 4 
covers how the individual indicators are aggregated into 
subgroups and an overall water risk score. Chapter 5 lists 
key limitations. 

A comparison to the old framework can be found on 
WRI’s website and is not included in this document. 

1. WATER RISK FRAMEWORK
Overview
The water risk framework follows a composite index 
approach and allows multiple water-related risks to be 
combined. 

There are three hierarchical levels, as can be seen in 
Figure 1. We start with 13 indicators covering various 
types of water risk. We then group the indicators and 
calculate the grouped water risk scores (composite score) 
using default, industry-defined, or user-defined weighting 
schemes. Finally, the three groups are combined into a 
single overall water risk score.
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Figure 1  |  Overview of Aqueduct Framework

Source: WRI.
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The rationale for creating a water risk framework is 
described in WRI’s earlier publication: “Aqueduct Water 
Risk Atlas” (Reig et al. 2013): 

This [water risk] framework organizes 
indicators into categories of risk that allow 
the creation of a composite index that brings 
together multiple dimensions of water-related 
risk into comprehensive aggregated scores. By 
providing consistent scores across the globe, 
the Aqueduct Water Risk Atlas enables rapid 
comparison across diverse aspects of water risk.

. . .

The Aqueduct Water Risk Framework enables 
users to study indicators individually or 
collectively, as well as to quantify and compare 
a variety of multidimensional water-related 
measures.

We selected the 13 indicators in Aqueduct 3.0 in three 
steps:

▪▪ We reviewed literature of relevant water issues, exist-
ing water indicators, and data sources. 

▪▪ We evaluated potential data sources through a com-
parative analysis of their spatial and temporal cover-
age, granularity, relevance to water users, consistency, 
and credibility of sources. 

▪▪ We consulted with industry, public sector, and aca-
demic water experts. 

We applied the following three principal criteria in 
selecting indicators:

▪▪ They should cover the full breadth of water-related 
risks, while minimizing overlap and potential confu-
sion resulting from an overabundance of indicators. 

▪▪ They should be actionable in the context of private 
and public sector decision-making. 

▪▪ They should comply with WRI’s commitment 
to open data and transparency—allowing input 
data, code, and results to be available to anyone 
who is interested—and be protected under a 
Creative Commons license 4.0 (“WRI’s Open Data 
Commitment” n.d.). 

2. HYDROLOGICAL MODEL
Five of the 13 indicators in our framework are based 
on the outputs of a global hydrological model.  Readers 
interested only in the indicator definitions can proceed 
directly to Chapter 3. In this chapter, we describe how we 
have selected the hydrological model and the additional 
processing steps to make the model output suitable as 
input for indicator calculation.

From the model’s output we use water withdrawal, avail-
able water, and groundwater data1 to calculate baseline 
water stress, baseline water depletion, seasonal variabil-
ity, interannual variability, and groundwater table decline 
(see Table 1). 

AQUEDUCT INDICATOR
MODEL OUTPUT USED

WATER WITHDRAWAL AVAIL ABLE WATER GROUNDWATER HEADS

Baseline water stress ✓ ✓

Baseline water depletion ✓ ✓

Interannual variability ✓

Seasonal variability ✓

Groundwater table decline ✓

Note: Aqueduct indicators are calculated using the respective outputs of a hydrological model. For example, baseline water depletion is calculated using water withdrawal and available water from the 
hydrological model.
Source: WRI.

Table 1  |  Aqueduct Indicators Based on Hydrological Model Output
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2.1 Model selection
We considered several global hydrological models and 
selected the PCRaster Global Water Balance (PCR-
GLOBWB 2) model (Wada et al. 2014a; Sutanudjaja et al. 
2018) over others, most notably Water Global Assessment 
and Prognosis (WaterGAP) (Müller Schmied et al. 2014; 
Eisner 2016) and Global Land Data Assimilation System 
(GLDAS) Phase 2 (Rodell et al. 2004). At the time the 
indicators were developed, GLDAS provided information 
until the year 2012, making it less relevant than PCR-
GLOBWB 2 and WaterGAP, both of which could be run for 
more recent years. There are many similarities between 
PCR-GLOBWB 2 and WaterGAP. For example, both mod-
els run global hydrology and water resources on a global 
scale at a daily time step; integrate demand, withdrawal, 
and return flows2 per time step; include reservoirs; and 
use kinematic wave routing of river water. Moreover, 
PCR-GLOBWB 2 can couple to a global two-layer ground-
water model (based on MODFLOW) to better represent 
groundwater flow (de Graaf et al. 2017). The code for 
PCR-GLOBWB 2 is open source and therefore aligned 
with WRI’s Open Data Commitment (“WRI’s Open Data 
Commitment” n.d.). For these reasons, WRI chose to work 
with PCR-GLOBWB 2 and use it as the new global hydro-
logical model underpinning Aqueduct. 

A description of the model itself and the settings used for 
Aqueduct 3.0 can be found in Appendix C. 

2.2 Model output
PCR-GLOBWB 2 is a global, gridded hydrological model. 
In the case of Aqueduct, each grid cell has a size of 5 × 5 
arc minutes. This equates roughly to 10 kilometer (km) 
× 10 km pixels, with any variation depending on the 
latitude. We used the following output data from PCR-
GLOBWB 2:

WITHDRAWAL: 

Gross (consumptive plus nonconsumptive) and 
net (only consumptive) withdrawal3 for four sec-
tors: domestic, industrial, irrigation, and livestock.  The 
(2 x 4=) 8 gridded data sets are available for each month 
between January 1960 and December 2014. 

AVAIL ABLE WATER:

Accumulated available water4 monthly at each grid 
cell between January 1960 and December 2014.

GROUNDWATER HEADS:

Groundwater heads for each month and each grid cell 
between January 1990 and December 2014.

2.3 Processing model output
To make the model output suitable as input for the Aque-
duct indicator calculation, we further processed the data 
by spatial and temporal aggregation.

▪▪ Spatial aggregation. Water withdrawal and avail-
able water are aggregated to hydrological sub-basins. 
Groundwater heads are aggregated to aquifers. 

▪▪ Temporal aggregation.  We apply statistical meth-
ods to the output time series to get a representative 
value for the recent situation, while reducing annual 
anomalies.  

2.3.1 SPATIAL AGGREGATION
Grid cells are not an appropriate spatial unit to use as 
input for the Aqueduct indicators. For baseline water 
stress, baseline water depletion, seasonal variability, 
and interannual variability, the preferred spatial units 
are hydrological sub-basins (Gassert et al. 2014). For 
groundwater table decline, the preferred spatial units are 
aquifers. 

HYDROLOGICAL SUB-BASINS

A hydrological basin is an area that drains at a single 
point to an ocean or inland lake. Each basin can be 
divided into smaller sub-basins. The assumption is that 
within each hydrological sub-basin, water resources are 
pooled. Water withdrawal is satisfied using the water 
resources available to the sub-basin. 

Aqueduct 3.0 uses the HydroBASINS level 6 hydrological 
sub-basins for three reasons:

▪▪ The digital elevation model of HydroBASINS corre-
sponds to PCR-GLOBWB 2.

▪▪ HydroBASINS are used in other tools and databases, 
so comparing and collating data is easier. 

▪▪ The HydroBASINS sub-basin data set contains 12 lev-
els, ranging from large basins to small sub-basins. In 
the future, this hierarchical model also will allow flex-
ibility when combining additional data sets (Lehner 
and Grill 2013).

AQUIFERS
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Groundwater head data are aggregated to groundwater 
aquifers (BGR and UNESCO 2008). This data set of global 
aquifers is selected because it has global coverage and is 
used in the previous version of Aqueduct. 

Of the 12 levels, we choose level 6 as the appropriate size 
of the sub-basins. Water demand is often satisfied with 
water from a nearby or slightly more distant source.  The 
average distance from source to destination of water 
supply is the main selection criterion of the appropriate 
HydroBASINS level. The goal is to select a level large 
enough to minimize the nonnatural effect of transfers 
of water (“inter-basin transfer”)5 and small enough to 
capture meaningful local variations. 

Based on limitations, primarily the lack of comprehensive 
local level inter-basin transfer data in PCR-GLOBWB 2, 
HydroBASINS level 6 is deemed the most appropriate 
sub-basin level for Aqueduct 3.0 analysis.  For perspec-
tive, HydroBASINS level 6 has a median area per sub-
basin6 of 5,318 km2 (roughly the size of the U.S. state of 
Delaware or twice the size of Luxembourg). The distribu-
tion of sub-basin areas is depicted in Figure 2.

PCR-GLOBWB 2 and HydroBASINS level 6 both assume a 

strictly convergent flow. This means that it cannot model 
bifurcations. This is an issue in delta regions, were rivers 
tend to split. To address this issue, we have identified 
delta sub-basins and merged them. The methodology is 
explained in Appendix D.

Spatial aggregation of withdrawal data

Sectoral gross and net withdrawal is aggregated to Hydro-
BASINS level 6 by resampling all 5 × 5 arc minute PCR-
GLOBWB 2 withdrawal data and the sub-basin delinea-
tion to a 30 × 30 arc second grid and calculating the mean 
flux (i.e., withdrawal in meters per month) per sub-basin. 

Spatial aggregation of available water

PCR-GLOBWB 2 uses a 5 × 5 arc minute spatial resolu-
tion, whereas the HydroBASINS sub-basins are derived 
from a much finer digital elevation model (3 × 3 arc 
seconds) resampled to 15 × 15 arc second resolution. The 
result is that the larger 5 × 5 arc minute grid cells might 
(partially) overlap adjacent sub-basins, thereby errone-
ously making water available to that sub-basin. 

This discrepancy is not an issue when calculating fluxes 

Figure 2  |  Area Distribution of HydroBASIN Level 6
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per sub-basin data, as we did with withdrawal. However, 
when working with accumulated data, the spatial mis-
match can lead to spurious results. We have developed a 
methodology to address this issue that uses the concept of 
stream order. 

A Strahler stream order (Strahler 1957) is a method of 
classifying river tributaries based on the nature of con-
fluences. Starting upstream, the smallest stream will be 
assigned a stream order of 1. When two or more streams 
with the same stream order converge, the stream order is 
increased by 1. When multiple streams of different stream 
orders converge, the stream order of the highest tributary 
is used (see Figure 3). 

When calculating available water per sub-basin, issues 

arise when larger 5 × 5 arc minute grid cells intersect 
adjacent sub-basins, especially near confluences. To 
address this issue, we apply four steps:

Step 1: Resample

The 5 × 5 arc minute PCR-GLOBWB 2 stream order data 
are resampled to 30 × 30 arc seconds. Each 5 × 5 arc 
minute cell is now represented by 100 smaller 30 × 30 arc 
second cells. 

Step 2: Mask

For each sub-basin, we then create a mask based on two 
criteria:

▪▪ Total number of cells > 1,000

▪▪ Number of cells where stream order equals maximum 
stream order < 150 

Only if both criteria are true are the cells with the highest 
stream order masked. 

The second criterion masks cells from an adjacent sub-
basin with a higher stream order than the target sub-
basin. The threshold is set to 150 to correspond to 1.5 cells 
at 5 × 5 arc minutes resampled to 30 × 30 arc minutes. In 
other words, when the sub-basin is sufficiently large and 
only a small area has the highest stream order, the cells 
with maximum stream order are masked.

Step 3: Count maximum available water

After applying the mask, for each sub-basin, we count the 
number of cells where available water equals the maxi-
mum available water for that sub-basin. If this number is 
greater than or equal to 100, the value is valid. If not, the 
second-largest accumulated available water value is used.7

Step 4: Sinks

Sinks8 will supersede the masking approach when one or 
more sinks are present in the sub-basin. This additional 
requirement is necessary to accurately determine the 
available water in coastal and inland lake sub-basins. 

We apply the approach above to the available water and 
obtain available water per sub-basin for each month 
between January 1960 and December 2014.

2.3.2 TEMPORAL AGGREGATION

Figure 3  |  Strahler Stream Order Schematic

Source: WRI, adapted from Strahler 1957
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One of the advantages of the Aqueduct framework is 
its ease of use. Although time series provide detailed 
insights, for a prioritization method and combined 
framework, summary indicators are preferred. Aqueduct 
provides baseline water risk information. This is very 
different from near-real-time water risk information or a 
historical assessment.9 Ideally, a baseline is a representa-
tion of the current situation without anomalies.  

We apply temporal aggregation steps to convert historical 
time series into useful input for baseline indicator cal-
culations. Groundwater head data are processed sepa-
rately; see “Groundwater Table Decline” (3.5) for more 
information. 

Step 1: Total withdrawal

We calculate the total gross and net withdrawal by sum-
ming up the four sectors (domestic, industrial, irrigation, 
and livestock) for each sub-basin and month (January 
1960–December 2014). The results are two time series: 
Gross total withdrawal and net total withdrawal for Janu-
ary 1960—December 2014 for each sub-basin.

Step 2: Split months

We then break up the time series into one series for each 
month. This yields time series of all months of January 
between 1960 and 2014, all months of February between 

1960 and 2014, and so on to all months of December 
between 1960 and 2014. We do this for gross total with-
drawal, net total withdrawal, and available water.

Step 3: Regression

In most sub-basins, the withdrawal data follow a clear 
increasing trend. This is caused by increases in under-
lying drivers such as growth in population and gross 
domestic product (GDP). The data can be erratic, and we 
try to reduce noise while keeping an accurate representa-
tion of the present value.10 We use ordinary least square 
(OLS) regression with a trailing moving window size of 10 
years.11 The independent variable is time (year), and the 
dependent variable is either gross total withdrawal, net 
total withdrawal, or available water. 

Additionally, we restrict the predicted value to the mini-
mum and maximum range of the 10-year moving window 
values. The predicted value can never exceed the maxi-
mum of the 10-year window values or be lower than the 
minimum of the 10-year window functions.

We opted for a window size of 10 years to capture longer 
climatic and socioeconomic trends while filtering annual 
anomalies. The temporal aggregation step 1 through 3 for 
an example sub-basin is shown in Figure 4.

Step 4: Mask arid and low water use sub-basins

Figure 4  |  �Ordinary Least Square Regression for Total Gross Withdrawal on a 10-Year Moving Window for July in an Example 
Basin (Ebro Sub-basin (216041)

Source: WRI.
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Aqueduct indicators require robust data as 
inputs.12 Sub-basins where data are sparse or very close 
to zero should therefore be handled separately. We identi-
fied those sub-basins using two criteria with thresholds 
taken from Aqueduct 2.1 (Gassert et al. 2014):

A sub-basin is “arid” if baseline available water < 0.03 
meters per year (m/yr)

A sub-basin is “low water use” if baseline gross total with-
drawal < 0.012 m/yr

To determine baseline available water and baseline gross 
total withdrawal, we apply OLS regression to the full time 
series (1960–2014), instead of 10-year moving windows. 
This is to prevent different classifications in different 
years. 

2.3.3 PROCESSED WITHDRAWAL AND AVAILABLE WATER
After applying the spatial and temporal aggregation steps, 
we have gross and net total withdrawal data based on the 
10-year OLS regression approach for each sub-basin. 

Delta regions and arid and low water use sub-basins will 
be treated accordingly in the indicator calculation. We use 
the aggregated time series of gross total withdrawal, net 
total withdrawal, and available water to calculate baseline 
water stress, baseline water depletion, seasonal variabil-
ity, and interannual variability. 

3. INDICATORS
For each of the 13 indicators in our framework, this chap-
ter offers a description, a calculation of raw values, and 
a conversion to 0–5 scores. This enables us to aggregate 
the indicators into groups, as well as to provide an overall 
water risk score. For each indicator, we also include the 
key limitations. 

Aqueduct 3.0 uses the United Nations Office for Disaster 
Risk Reduction (UNDRR) risk element terminology of 
hazard, exposure, and vulnerability. Each indicator is 
assigned a risk element (see Figure 5):

▪▪ HAZARD: Threatening event or condition (e.g., flood 
event, water stress condition). 

▪▪ EXPOSURE: Elements present in the area affected by 
the hazard (e.g., population, asset, economic value). 

▪▪ VULNERABILITY: The resilience or lack of resilience of 
the elements exposed to the hazard.

Figure 5  |  �Elements of Risk

Source: Raw data from UNDRR, modified/aggregated by WRI.

RISK HAZARD EXPOSURE VULNERABILITY

= X X
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3.1 Baseline Water Stress

GENERAL:

Name Baseline Water Stress

Subgroup Physical risk quantity

Risk element

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Monthly and annual baseline

SOURCE:

Spatial resolution 5 × 5 arc minute grid cells

Temporal resolution Monthly

Temporal range 1960–2014

E X TRA:

Partner organization(s) Utrecht University

Model PCR-GLOBWB 2

Date of publication 2019

3.1.1 DESCRIPTION
Baseline water stress measures the ratio of total water 
withdrawals to available renewable surface and ground-
water supplies. Water withdrawals include domestic, 
industrial, irrigation, and livestock consumptive and 
nonconsumptive uses. Available renewable water sup-
plies include the impact of upstream consumptive water 
users and large dams on downstream water availability. 
Higher values indicate more competition among 
users. 

3.1.2 CALCULATION
Baseline water stress is calculated using the postpro-
cessed gross and net total withdrawal and available water 
per sub-basin time series from the default PCR-GLOBWB 
2 run (covered in Chapter 2).

Step 1: Calculate time series of water stress

IN WHICH,

wsm,y,b,ols10 �| �Water stress per month, per year, per sub-basin in [-]

wwm,y,b,ols10 �| �Gross (consumptive plus nonconsumptive) total withdrawal per 
month, per year, per sub-basin in [m/month]

Qm,y,b,ols10 �| �Available water per month, per year, per sub-basin in [m/month]

wnm,y,b,ols10 �| �Net (consumptive) total withdrawal per month, per year, per sub-
basin in [m/month]

This results in 12 time series of water stress (one for each 
month) per sub-basin. Note that water resources in delta 
sub-basins are pooled.

RISK HAZARD E XPOSURE VULNERABILITY

= X X
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Step 2:  Determine baseline water stress

Another OLS regression is fitted through the water stress 
time series. The regression value for the year 2014 is used 
as a baseline. Note that, although we use the “2014” value 
of the regression, this is not an estimate of the water 
stress in 2014. Instead, the result of this approach is a 
baseline.

IN WHICH,

bwsm,s | Raw value of baseline water stress per month per sub-basin in [-]

wsm,y,b,ols10 | Water stress per month, per year, per sub in [-]

The result is 12 water stress values, one for each month. 
Additionally, we limit the raw values to a maximum of 1 
and a minimum of 0. We calculate the annual water stress 
by averaging the monthly values.  

Sub-basins classified as “arid and low water use” are 
handled separately.

3.1.3 CONVERSION TO RISK CATEGORIES
The risk thresholds are based on Aqueduct 2.1 (Gassert et 
al. 2014). 

The raw values are remapped to a 0–5 scale using the 
following equation:

RAW VALUE RISK CATEGORY SCORE

<10% Low 0–1

10–20% Low–medium 1–2

20–40% Medium–high 2–3

40–80% High 3–4

>80% Extremely high 4–5

Arid and low water use 5

Where r is the raw indicator value and score is the indicator 
score [0–5].

3.1.4 LIMITATIONS
All limitations of the underlying data, including those pro-
duced by the PCR-GLOBWB 2 global hydrological model 
and HydroBASINS 6 hydrological sub-basin delineation, 
apply to this indicator. Please see the original publications 
of these data sets for a full list of limitations.

One of the biggest assumptions is that water resources are 
pooled within each sub-basin. However, in HydroBASINS 
6, coastal and island sub-basins are often grouped to 
make the area of the sub-basins more homogeneous. The 
assumption of shared water resources might not hold in 
aggregated coastal sub-basins. 

Water resources in PCR-GLOBWB 2 are pooled in 
abstraction zones. This assumption differs from the 
sub-basin approach in Aqueduct. This is one of the prime 
reasons for further processing of the PCR-GLOBWB 2 
data. 

Although the underlying models have been validated, 
the results are not. Water stress remains subjective and 
cannot be measured directly. The lack of direct validation 
makes it impossible to assess some of the parameters in 
our calculation, such as the length of the input time series, 
regression method, and optimal moving window size. 

The water stress indicator presented here does not explic-
itly take into account environmental flow requirements,13 
water quality, or access to water. Views differ regarding 
what to include in a water stress indicator (Vanham et al. 
2018). 

Finally, we should stress that Aqueduct is tailored to 
large-scale comparison of water-related risks. The indica-
tors have limited added value on a local scale. 
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3.2 Baseline Water Depletion 3.2.1 DESCRIPTION
Baseline water depletion measures the ratio of total water 
consumption to available renewable water supplies. 
Total water consumption includes domestic, industrial, 
irrigation, and livestock consumptive uses.  Available 
renewable water supplies include the impact of upstream 
consumptive water users and large dams on downstream 
water availability. Higher values indicate larger 
impact on the local water supply and decreased 
water availability for downstream users. 

Baseline water depletion is similar to baseline water 
stress; however, instead of looking at total water with-
drawal (consumptive plus nonconsumptive), baseline 
water depletion is calculated using consumptive with-
drawal only. 

3.2.2 CALCULATION
Baseline water depletion is calculated using the processed 
net total withdrawal and available water per sub-basin 
time series from the default PCR-GLOBWB 2 run (covered 
in Chapter 2).

Step 1: Calculate time series of water depletion

IN WHICH,

wdm,y,b,ols10 �| �Water depletion per month, per year, per sub-basin in [-]

wnm,y,b,ols10 �| �Net (consumptive) total withdrawal per month, per year, per sub-
basin in [m/month]

Qm,y,b,ols10 �| �Available water per month, per year, per sub-basin in [m/month]

This results in 12 time series of water depletion (one for 
each month) per sub-basin. Note that water resources in 
delta sub-basins are pooled (shared). 

GENERAL:

Name Baseline Water Depletion

Subgroup Physical risk quantity

Risk element

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Monthly and annual baseline

SOURCE:

Spatial resolution 5 × 5 arc minute grid cells

Temporal resolution Monthly

Temporal range 1960–2014

E X TRA:

Partner organization(s) Utrecht University

Model PCR-GLOBWB 2

Date of publication 2019

RISK HAZARD E XPOSURE VULNERABILITY

= X X
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Step 2:  Determine baseline water depletion

Another OLS regression is fitted through the water deple-
tion time series. The regression value for the year 2014 is 
used as a baseline. Note that, although we use the “2014” 
value of the regression, this is not an estimate of the water 
depletion in 2014. Instead, the result of this approach is a 
baseline.

IN WHICH,

bwdm,s �| Raw value of baseline water depletion per month per sub-basin in [-]

wdm,y,b,ols10 �| Water depletion per month, per year, per sub in [-]

This results in 12 water depletion values, one for each 
month. Additionally, we limit the raw values to a maxi-
mum of 1 and a minimum of 0. We calculate the annual 
water depletion by averaging the monthly values.  

Sub-basins classified as “arid and low water use” are 
handled separately.

3.2.3 CONVERSION TO RISK CATEGORIES
The thresholds are based on Brauman et al. (2016).

We use linear interpolation within each category to remap 
the raw values to a 0–5 scale using the following equation:

RAW VALUE RISK CATEGORY SCORE

<5% Low 0–1

5–25% Low–medium 1–2

25–50% Medium–high 2–3

50–75% High 3–4

>75% Extremely high 4–5

Arid and low water use 5

Where r is the raw indicator value and score is the indicator 
score [0–5].

3.2.4 LIMITATIONS
See Baseline Water Stress, Limitations (3.1.4). 

In addition, we had to omit the categories “dry year” and 
“seasonal” from Brauman et al. (2016) to make the indica-
tor suitable for the Aqueduct framework. 
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The raw values are remapped to a 0–5 scale using the 
following equation:

Where r is the raw indicator value and score is the indicator 
score [0–5].

3.3.4 LIMITATIONS
See Baseline Water Stress, Limitations (3.1.4). 

In addition, we have analyzed the full time series of PCR-
GLOBWB 2; that is, 1960 to 2014. We have not analyzed 
the effect of using a different range.  

3.3 Interannual Variability 

3.3.1 DESCRIPTION
Interannual variability measures the average between-
year variability of available water supply, including both 
renewable surface and groundwater supplies. Higher 
values indicate wider variations in available sup-
ply from year to year.  

3.3.2 CALCULATION
Interannual variability is calculated using the available 
water time series from the default PCR-GLOBWB 2 
aggregated in space but not in time. See Chapter 2.

RAW VALUE RISK CATEGORY SCORE

<0.25 Low 0–1

0.25–0.50 Low–medium 1–2

0.50–0.75 Medium–high 2–3

0.75–1.00 High 3–4

>1.00 Extremely high 4–5

Interannual, or between year, variability is defined as the 
coefficient of variation (CV) of available water for each 
sub-basin. The CV is the standard deviation (SD) of the 
available water, divided by the mean. The CV per sub-
basin is determined for each individual month, as well as 
annually. 

IN WHICH,

cvm,b �| Coefficient of variation per month, per sub-basin [-]

Qm,b �| Available water per month, per sub-basin in meters per year

iavm,b �| Interannual variability per month, per sub-basin in [-]

3.3.3 CONVERSION TO RISK CATEGORIES
The risk thresholds are based on Aqueduct 2.1 (Gassert et 
al. 2014). 

GENERAL:

Name Interannual Variability

Subgroup Physical risk quantity

Risk element

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Monthly and annual baseline

SOURCE:

Spatial resolution 5 × 5 arc minute grid cells

Temporal resolution Monthly

Temporal range 1960–2014

E X TRA:

Partner organization(s) Utrecht University

Model PCR-GLOBWB 2

Date of publication 2019

RISK HAZARD E XPOSURE VULNERABILITY

= X X
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3.4 Seasonal Variability

3.4.1 DESCRIPTION
Seasonal variability measures the average within-year 
variability of available water supply, including both 
renewable surface and groundwater supplies. Higher 
values indicate wider variations of available sup-
ply within a year.

3.4.2 CALCULATION
Seasonal variability is calculated using the available water 
time series from the default PCR-GLOBWB aggregated in 
space but not in time. See Chapter 2.

First, the available water per month, per sub basin, is cal-
culated over the entire time series 1960–2014 (55 years).

IN WHICH,

Qm,b �| Average available water per month per sub-basin in [m/month]

Qy,m,b �| Available water per year per month per sub-basin in [m/month]

The coefficient of variation is calculated using these 12 
averages.  

 

IN WHICH,

sevb �| Seasonal variability per sub-basin in [-]

Qm,b �| Average available water per month per sub-basin in [m/month]

3.4.3 CONVERSION TO RISK CATEGORIES
The risk thresholds are based on Aqueduct 2.1 (Gassert et 
al. 2014). 

RAW VALUE RISK CATEGORY SCORE

<0.33 Low 0–1

0.33–0.66 Low–medium 1–2

0.66–1.00 Medium–high 2–3

1.00–1.33 High 3–4

>1.33 Extremely high 4–5

The raw values are remapped to a 0–5 scale using the 
following equation:

Where r is the raw indicator value and score is the indicator 
score [0–5].

3.4.4 LIMITATIONS
See Baseline Water Stress, Limitations (3.1.4).

Additionally, the effect of using different lengths of the 
input time series is not examined. The human and cli-
matic influence on available water is likely to be more 
profound in recent years.

GENERAL:

Name Seasonal Variability

Subgroup Physical risk quantity

Risk element

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Annual baseline

SOURCE:

Spatial resolution 5 × 5 arc minute grid cells

Temporal resolution Monthly

Temporal range 1960–2014

E X TRA:

Partner organization(s) Utrecht University

Model PCR-GLOBWB 2

Date of publication 2019

RISK HAZARD E XPOSURE VULNERABILITY

= X X
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3.5 Groundwater Table Decline 3.5.1 DESCRIPTION
Groundwater table decline measures the average decline 
of the groundwater table as the average change for the 
period of study (1990–2014). The result is expressed in 
centimeters per year (cm/yr). Higher values indicate 
higher levels of unsustainable groundwater 
withdrawals.

3.5.2 CALCULATION
Groundwater table decline is calculated using the ground-
water heads time series from the PCR-GLOBWB 2 run 
coupled with MODFLOW to account for lateral groundwa-
ter flow processes. This indicator is based on the gridded14 
monthly groundwater heads between January 1990 and 
December 2014.15 

The groundwater aquifers contain several geomorphologi-
cal features, which for practical reasons can be divided 
into sedimentary basins and mountain ranges. In moun-
tainous areas, most materials are hard rock and eventu-
ally weathered. In the PCR-GLOBWB 2 model coupled 
with MODFLOW, very deep groundwater influences the 
averages in mountainous cells and is not representative. 
These cells are therefore discarded from the calculations 
following the method in de Graaf et al. (2015). 

Mountainous areas are determined by comparing the 
height of the floodplain within a cell with the average 
elevation of that same cell. The elevation of the floodplain 
is derived from the 30 × 30 arc second digital elevation 
data from HydroSheds (Lehner et al. 2008).  The flood 
plain elevation is simply the minimum of the input.

IN WHICH,

hfloodplain,5 , �| Elevation of floodplain in meters for each 5 × 5 arc minute cell

hDEM 30 “ �| �Elevation derived from 30 × 30 arc second digital elevation model 
(DEM) in meters

GENERAL:

Name Groundwater Table Decline

Subgroup Physical risk quantity

Risk element

RESULTS:

Spatial resolution Groundwater aquifer (WHYMAP)

Temporal resolution Annual baseline

SOURCE:

Spatial resolution 5 × 5 arc minute grid cells

Temporal resolution Monthly

Temporal range 1960–2014

E X TRA:

Partner organization(s) Deltares, Utrecht University

Model PCR-GLOBWB 2 + MODLFOW

Date of publication 2019

RISK HAZARD E XPOSURE VULNERABILITY

= X X
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The average elevation for each 5-arc minute cell is taken 
directly from the HydroSheds data. If the difference 
between the floodplain elevation and the average elevation 
is greater than 50 m, the cell is classified as mountainous. 

IN WHICH,

hfloodplain,5 ,�| Elevation of floodplain in meters

hDEM 5 , �| �Elevation derived from 5 arc minute (approximately 11 km at equator) 
DEM in meters

The threshold of 50 m was chosen as it proved to include 
70 percent of the unconsolidated sediments mapped in 
the Global Lithological Map (Hartmann and Moosdorf 
2012).

After masking the mountainous areas, results are aggre-
gated to groundwater aquifers derived from the World-
wide Hydrogeological Mapping and Assessment Pro-
gramme (WHYMAP) data set (BGR and UNESCO 2018). 

The monthly results at the aquifer scale are fitted with 
a first-order regression. The slope of this regression line 
(cm/yr) indicates the existence of a downward (or upward) 
trend. The following estimators are used to further assess 
the trend: (1) coefficient of determination and (2) the p 
value. 

The coefficient of determination is used to determine 
whether the trend is linear or erratic. A minimum thresh-
old of 0.9 is applied to mask out erratic and error-prone 
trends. 

For the p value, a maximum threshold of 0.05 is used. 

3.5.3 CONVERSION TO RISK CATEGORIES
The risk category thresholds are based on a combination 
of expert judgment and a literature review (Galvis Rodrí-
guez et al. 2017). 

RAW VALUE RISK CATEGORY SCORE

<0 cm/y Low 0–1

0–2 cm/y Low–medium 1–2

2–4 cm/y Medium–high 2–3

4–8 cm/y High 3–4

>8 cm/y Extremely high 4–5

Within each category, we use linear interpolation to 
convert the raw values to a 0–5 scale using the following 
equation:

Where r is the raw indicator value and score is the indicator 
score [0–5].

3.5.4 LIMITATIONS
The limitations of PCR-GLOBWB 2, MODFLOW, 
WHYMAP, climate forcing, and other input data sets are 
propagated to these results. The results are only validated 
using a literature review of selected aquifers and by com-
paring the results to coarse remote-sensing data. 

The threshold for masking out mountainous areas was set 
once without a sensitivity analysis. The temporal range 
[1990–2014] was selected on the basis of expert judgment 
and differs from some of the other water quantity indica-
tors that use [1960–2014] as the input time series. 

See Galvis Rodríguez et al. (2017) for additional 
limitations.
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3.6 Riverine Flood Risk 3.6.1 DESCRIPTION
Riverine flood risk measures the percentage of population 
expected to be affected by riverine flooding in an average 
year, accounting for existing flood-protection standards. 
Flood risk is assessed using hazard (inundation caused by 
river overflow), exposure (population in flood zone), and 
vulnerability.16 The existing level of flood protection is also 
incorporated into the risk calculation. It is important to 
note that this indicator represents flood risk not in terms 
of maximum possible impact but rather as average annual 
impact. The impacts from infrequent, extreme flood years 
are averaged with more common, less newsworthy flood 
years to produce the “expected annual affected popula-
tion.” Higher values indicate that a greater propor-
tion of the population is expected to be impacted 
by riverine floods on average.

3.6.2 CALCULATION
Data on the population impacted by riverine floods are 
provided by Aqueduct Floods at the state/HydroBASIN 
6 intersect scale (Ward et al. forthcoming). The data set 
estimates the average number of people to be impacted 
annually for several flood event magnitudes (2, 5, 10, 25, 
50, 100, 250, 500, and 1,000 in return periods). 

The expected annual affected population is calculated 
using a risk curve (Meyer et al. 2009). To create the curve, 
the return periods are first converted into probabilities 
(i.e., 1/return period) and then plotted on the x axis 
against the impacted population (Figure 6). Next, flood 
protection is added to the graph. The current level of flood 
protection, given in return years, comes from the Flood 
Protection Standards (FLOPROS) model (Scussolini et al. 
2016). All impacts that fall to the right of the flood protec-
tion line (i.e., impacted by smaller floods) are assumed 
to be protected against floods and are removed from the 
calculation. The expected annual affected population is 
calculated by integrating the area under the curve to the 
left of the flood protection line. 

The expected annual affected population is calculated 
for each state/HydroBASIN 6 intersect, then aggregated 
up to the HydroBASIN 6 scale. The total population in 
each state/HydroBASIN 6 intersect is also summed to the 
HydroBASIN 6 scale (Ward et al. forthcoming). Finally, 
the raw riverine flood risk score—the percentage of popu-

ADDITIONAL 
DATA 
SOURCE

INPUT SPATIAL 
RESOLUTION

INPUT TEMPORAL 
RESOLUTION

INPUT 
TEMPORAL 
RANGE

SOURCE

Existing Flood 
Protection 
Levels

State Annual 2016
FLOPROS 
(Scussolini 
et al. 2016)

GENERAL:

Name Riverine Flood Risk

Subgroup Physical risk quantity

Risk element

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Annual baseline

SOURCE:

Spatial resolution 30 × 30 arc minute grid cells

Temporal resolution Annual

Temporal range 2010

E X TRA:

Partner organization(s) Deltares, IVM, PBL, Utrecht University

Model GLOFRIS (Ward et al. forthcoming)

Date of publication 2019

RISK HAZARD E XPOSURE VULNERABILITY

= X X
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lation expected to be affected annually by riverine floods 
per HydroBASIN 6—is calculated:

IN WHICH,

rfr �| Riverine flood risk raw value in [-]

popexp,r,y �| �Expected annual affected population by riverine flooding in 
[number of people]

3.6.3 CONVERSION TO RISK CATEGORIES
The thresholds are based on quantiles, with the exception 
of the basins with no riverine hazard. Basins without a 
flood hazard are given the lowest risk score, 0, and are 
removed from the rest of the data set before the quantiles 
are calculated. 

The raw values are remapped to a 0–5 scale using the 
following equation:

Where r is the raw indicator value and score is the indicator 
score [0–5].

3.6.4 LIMITATIONS
Riverine and coastal flood risks must be evaluated and 
used separately, as the compound risks between river and 
storm surges are not modeled. The data also assume that 
flood events are entirely independent of each other, so the 
impact from overlapping flood events is not considered. 
Finally, the data do not include any indirect impacts from 
flooding (e.g., disrupted transportation, loss of work, etc.). 

Figure 6  |  Risk Curve Used to Calculate Expected Annual Affected Population from Floods

Source: WRI.

RAW VALUE RISK CATEGORY SCORE

0 to 1 in 1,000 Low 0–1

1 in 1,000 to 2 in 1,000 Low–medium 1–2

2 in 1,000 to 6 in 1,000 Medium–high 2–3

6 in 1,000 to 1 in 100 High 3–4

More than 1 in 100 Extremely high 4–5
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3.7 Coastal Flood Risk 3.7.1 DESCRIPTION
Coastal flood risk measures the percentage of the popu-
lation expected to be affected by coastal flooding in an 
average year, accounting for existing flood protection 
standards. Flood risk is assessed using hazard (inunda-
tion caused by storm surge), exposure (population in 
flood zone), and vulnerability.17 The existing level of flood 
protection is also incorporated into the risk calculation. 
It is important to note that this indicator represents flood 
risk not in terms of maximum possible impact but rather 
as average annual impact. The impacts from infrequent, 
extreme flood years are averaged with more common, less 
newsworthy flood years to produce the “expected annual 
affected population.” Higher values indicate that a 
greater proportion of the population is expected 
to be impacted by coastal floods on average.

3.7.2 CALCULATION
Data on the population impacted by coastal floods are 
provided by Aqueduct Floods at the state/HydroBASIN 
6 intersect scale (Ward et al. forthcoming). The data set 
estimates the average number of people to be impacted 
annually for several flood event magnitudes (2, 5, 10, 25, 
50, 100, 250, 500, and 1,000 in return periods).  

The expected annual affected population is calculated 
using a risk curve (Meyer et al. 2009). To create the curve, 
the return periods are first converted into probabilities 
(i.e., 1/return period) and then plotted on the x axis 
against the impacted population (Figure 6). Next, vulner-
ability—or flood protection—is added to the graph as a 
vertical line. The current level of flood protection, given 
in return years, comes from the FLOPROS model (Scus-
solini et al. 2016). All impacts that fall to the right of the 
flood protection line (i.e., impacted by smaller floods) are 
assumed to be protected against floods and are removed 
from the calculation. The expected annual affected 
population is calculated by integrating the area under the 
curve to the left of the flood protection line. 

ADDITIONAL 
DATA 
SOURCE

INPUT SPATIAL 
RESOLUTION

INPUT TEMPORAL 
RESOLUTION

INPUT 
TEMPORAL 
RANGE

SOURCE

Existing Flood 
Protection 
Levels

State Annual 2016
FLOPROS 
(Scussolini 
et al. 2016)

GENERAL:

Name Coastal Flood Risk

Subgroup Physical risk quantity

Risk element

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Annual baseline

SOURCE:

Spatial resolution 30 × 30 arc minute grid cells

Temporal resolution Annual

Temporal range 2010

E X TRA:

Partner organization(s) Deltares, IVM, PBL, Utrecht University

Model GLOFRIS (Ward et al. forthcoming)

Date of publication 2019

RISK HAZARD E XPOSURE VULNERABILITY

= X X
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The expected annual affected population is calculated for 
each state/HydroBASIN 6 intersect and then aggregated 
up to the HydroBASIN 6 scale. The total population in 
each state/HydroBASIN 6 intersect is also summed to the 
HydroBASIN 6 scale (Ward et al. forthcoming). Finally, 
the raw coastal flood risk score—the percentage of popu-
lation expected to be affected annually by coastal floods 
per HydroBASIN 6—is calculated:

IN WHICH,

cfr �| Coastal flood risk raw value in [-]

popexp,c,y �| �Expected annual affected population by coastal flooding in 
[number of people]

3.7.3 CONVERSION TO RISK CATEGORIES
The thresholds are based on quantiles, with the excep-
tion of the basins with no coastal hazard. Basins without 
a flood hazard are given the lowest risk score, 0, and 
removed from the rest of the data set before the quantiles 
are calculated. 

The raw values are remapped to a 0–5 scale using the 
following equation:

Where r is the raw indicator value and score is the indicator 
score [0–5].

3.7.4 LIMITATIONS
Riverine and coastal flood risks must be evaluated and 
used separately, as the compound risks between river and 
storm surges are not modeled. The data also assume that 
flood events are entirely independent of each other, so the 
impact from overlapping flood events is not considered. 
Finally, the data do not include any indirect impacts from 
flooding (e.g., disrupted transportation, loss of work, etc.). 

RAW VALUE RISK CATEGORY SCORE

0 to 9 in 1,000,000 Low 0–1

9 in 1,000,000 to 7 in 100,000 Low–medium 1–2

7 in 100,000 to 3 in 10,000 Medium–high 2–3

3 in 10,000 to 2 in 1,000 High 3–4

More than 2 in 1,000 Extremely high 4–5
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3.8 Drought Risk 3.8.1 DESCRIPTION
Drought risk measures where droughts are likely to 
occur, the population and assets exposed, and the vulner-
ability of the population and assets to adverse effects. 
Higher values indicate higher risk of drought.

3.8.2 CALCULATION
The drought risk indicator is based on Carrão et al. (2016) 
and is used with minimal alterations. Drought risk is 
assessed for the period 2000–2014 and is a combina-
tion of drought hazard, drought exposure, and drought 
vulnerability. 

Risk = hazard × exposure × vulnerability

The methodology is explained in Carrão et al. (2016):

Drought hazard is derived from a non-parametric 
analysis of historical precipitation deficits at the 
0.5 [degree resolution]; drought exposure is based 
on a non-parametric aggregation of gridded indi-
cators of population and livestock densities, crop 
cover and water stress; and drought vulnerability 
is computed as the arithmetic composite of high 
level factors of social, economic and infrastruc-
tural indicators, collected at both the national and 
sub-national levels.

The hazard, exposure, vulnerability, risk, and no-data 
mask data available at 5 × 5 arc minute resolution are 
averaged for each hydrological sub-basin. 

IN WHICH,

drsub-basin �| Drought risk per sub-basin

npix �| Number of pixels per sub-basin

drpix �| Drought risk per pixel 

GENERAL:

Name Drought Risk

Subgroup Physical risk quantity

Risk element

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Annual baseline

SOURCE:

Spatial resolution 5 × 5 arc minute grid cells

Temporal resolution Annual

Temporal range 2000–2014

E X TRA:

Partner organization(s) JRC

Model Various

Date of publication 2016

RISK HAZARD E XPOSURE VULNERABILITY

= X X
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3.8.3 CONVERSION TO RISK CATEGORIES
The risk categories are derived from Carrão et al. (2016):

3.8.4 LIMITATIONS
Many of the indicators in the Aqueduct water risk frame-
work represent a hazard. Some indicators, including 
drought risk, add exposure and vulnerability. Aqueduct 
combines these risk elements into a single framework.

The drought risk indicator does not consider hydrological 
drought and excludes associated risks such as unnavigable 
rivers. 

Other Aqueduct risk categories are typically skewed 
toward the higher side, with the category “extremely high” 
as the top category. The drought risk indicator has not 
been interpreted yet and is therefore presented at a low–
high scale instead of low–extremely high.

See Carrão et al. (2016) for limitations of the different risk 
elements (hazard, exposure, vulnerability) and the input 
data sets.

RAW VALUE RISK CATEGORY SCORE

0.0–0.2 Low 0–1

0.2–0.4 Low–medium 1–2

0.4–0.6 Medium 2–3

0.6–0.8 Medium–high 3–4

0.8–1.0 High 4–5

The raw values are remapped to a 0–5 scale using the 
following equation:

Where r is the raw indicator value and score is the indicator 
score [0–5].
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3.9 Untreated Connected Wastewater 3.9.1 DESCRIPTION
Untreated connected wastewater measures the percent-
age of domestic wastewater that is connected through 
a sewerage system and not treated to at least a primary 
treatment level. Wastewater discharge without adequate 
treatment could expose water bodies, the general public, 
and ecosystems to pollutants such as pathogens and 
nutrients. The indicator compounds two crucial elements 
of wastewater management: connection and treatment. 
Low connection rates reflect households’ lack of access to 
public sewerage systems; the absence of at least primary 
treatment reflects a country’s lack of capacity (infra-
structure, institutional knowledge) to treat wastewater. 
Together these factors can indicate the level of a country’s 
current capacity to manage its domestic wastewater 
through two main pathways: extremely low connection 
rates (below 1 percent), and high connection rates with 
little treatment. Higher values indicate higher per-
centages of point source wastewater discharged 
without treatment. 

3.9.2 CALCULATION
Sewerage connection and wastewater treatment data 
come from a white paper published by the International 
Food Policy Research Institute (IFPRI) and Veolia (Xie 
et al. 2016). In brief, Xie et al. aggregate three of the 
leading research papers on country-level connection and 
treatment rates into one data set through a hierarchical 
methodology.  The data include the percentage of house-
holds connected to sewerage systems (percent connected), 
and the percentage of wastewater connected left untreated 
(i.e., not treated using primary, secondary, or tertiary 
treatments) (percent untreated). 

The calculation is based on the Environmental Perfor-
mance Index’s Wastewater Treatment (WWT) indicator 
(Wendling et al. 2018):

GENERAL:

Name Untreated Connected Wastewater

Subgroup Physical risk quality

Risk element

RESULTS:

Spatial resolution Country

Temporal resolution Annual baseline

SOURCE:

Spatial resolution Country

Temporal resolution Annual

Temporal range 2000–2010

E X TRA:

Partner organization(s) IFPRI, Veolia

Model Various

Date of publication 2016

RISK HAZARD E XPOSURE VULNERABILITY

= X X
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WWT examines the performance of wastewater treatment 
(Wendling et al. 2018). The untreated, connected waste-
water indicator reverses the WWT to instead examine the 
hazard: 

IN WHICH,

UCW �| Unimproved/connected wastewater raw value in [%]

c �| Percent connected wastewater in [%]

u �| Percent untreated wastewater in [%]

3.9.3 CONVERSION TO RISK CATEGORIES
The risk thresholds are based on quantiles, with the 
exception of the “low to no wastewater connected” thresh-
old. All data marked in this category are given the highest 
risk score and removed from the rest of the data set before 
the quantiles are calculated.

The raw values are remapped to a 0–5 scale using the 
following equation:

Where r is the raw indicator value and score is the indicator 
score [0–5].

3.9.4 LIMITATIONS
Important sources of water pollution, such as industrial 
waste and agricultural runoff, are not included. Waste-
water that may be treated on-site, such as with private 
septic tanks, is also not captured due to a lack of available 
data. In addition, the severity of water pollution, which 
depends on the magnitude of loadings of pollutants and 
dilution capacity of receiving water bodies, is not repre-
sented (from a 2017 personal communication with Xie). 
This indicator also does not account for all water pollution 
sources, as it is focused primarily on household connec-
tion rates. 

RAW VALUE RISK CATEGORY SCORE

<30% Low 0–1

30–60% Low–medium 1–2

60–90% Medium–high 2–3

90–100% High 3–4

100% Extremely high 4–5

Low to no wastewater 
connected 5
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3.10 Coastal Eutrophication Potential 3.10.1 DESCRIPTION
Coastal eutrophication potential (CEP) measures the 
potential for riverine loadings of nitrogen (N), phospho-
rus (P), and silica (Si) to stimulate harmful algal blooms 
in coastal waters. The CEP indicator is a useful metric 
to map where anthropogenic activities produce enough 
point-source and nonpoint-source pollution to potentially 
degrade the environment. When N and P are discharged 
in excess over Si with respect to diatoms, a major type 
of algae, undesirable algal species often develop. The 
stimulation of algae leading to large blooms may in turn 
result in eutrophication and hypoxia (excessive biological 
growth and decomposition that reduces oxygen available 
to other organisms). It is therefore possible to assess the 
potential for coastal eutrophication from a river’s N, P, 
and Si loading. Higher values indicate higher levels 
of excess nutrients with respect to silica, creat-
ing more favorable conditions for harmful algal 
growth and eutrophication in coastal waters 
downstream. 

3.10.2 CALCULATION
The calculation described below is based on Billen and 
Garnier’s (2007) Indicator of Coastal Eutrophication 
Potential (ICEP) methodology.  The nutrient data come 
from Bouwman et al. (2015). In short, the data are based 
on the Global NEWS 2 model (Mayorga et al. 2010) 
and aligned to Simulated Topological Network basins 
(Vörösmarty et al. 2000). The NEWS 2 model uses 
biophysical, natural, and anthropogenic (both point and 
nonpoint) nutrient sources, along with in-watershed and 
in-river removal processes, to derive global nutrient yields 
(Mayorga et al. 2010). Total N and P fluxes are calculated 
by summing NEWS 2 nutrient yield data for dissolved 
organic, dissolved inorganic, and particulate nutrients. Si 
fluxes are simply the dissolved inorganic Si yields in the 
basin. 

ADDITIONAL 
DATA 
SOURCE

INPUT SPATIAL 
RESOLUTION

INPUT TEMPORAL 
RESOLUTION

INPUT 
TEMPORAL 
RANGE

SOURCE

STN Basins 30 x 30 arc 
seconds Annual 2000 Vörösmarty 

et al. (2000)

GENERAL:

Name Coastal Eutrophication Potential

Subgroup Physical risk quality

Risk element

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Annual baseline

SOURCE:

Spatial resolution Simulated Topological Network (STN)

Temporal resolution Annual

Temporal range 2000

E X TRA:

Partner organization(s) Utrecht University, Washington  
State University

Date of publication 2016

RISK HAZARD E XPOSURE VULNERABILITY

= X X



TECHNICAL NOTE  |  July 2019  |  27

Aqueduct 3.0: Updated Decision-Relevant Global Water Risk Indicators

The raw values are remapped to a 0–5 scale using the 
following equation:

Where r is the raw indicator value and score is the indicator 
score [0–5].

3.10.4 LIMITATIONS
Eutrophication can also impact freshwater, but a global 
data set for freshwater eutrophication potential is not cur-
rently available. Therefore, the indicator does not reflect 
the risk of eutrophication upstream of the coastal zone. In 
addition, the index calculation does not account for shifts 
in seasonality or the characteristics of the receiving water 
body. 

The calculation is based on the Redfield molar ratio 
(C:N:P:Si = 106:16:1:20), which is a representation of the 
approximate nutrient requirement of marine diatoms (Bil-
len and Garnier 2007):

IN WHICH,

CEP | Coastal eutrophication potential [kg C-equivalent/km2/day]

jn | �Mean flux of total nitrogen delivered at the outlet of the river basin [kg N/
km2/yr]

jp | �Mean flux of total phosphorus delivered at the outlet of the river basin [kg 
P/km2/yr]

jSi  | �Mean flux of dissolved silica delivered at the outlet of the river basin[(kg Si/
km2/yr]

N | Molar mass of nitrogen [14g/mol]

Si | Molar mass of silica [28g/mol]

P | Molar mass of phosphrous [31g/mol]

A negative value indicates that silica is present in excess 
over the limiting nutrient and thus suggests the absence 
of eutrophication. A positive value indicates an excess of 
nutrients over the potential for diatom growth, suggest-
ing suitable conditions for the growth of harmful algae 
(Garnier et al. 2010).

As a final step, the results are aggregated to HydroBASIN 
level 6 to align the indicator with the remainder of the 
framework. 

3.10.3 CONVERSION TO RISK CATEGORIES
The thresholds used to convert raw values into risk scores 
are based on the suggested risk categories of the Trans-
boundary Water Assessment Programme (TWAP) for 
ICEP (IOC-UNESCO and UNEP 2016), with one adjust-
ment: the boundary between TWAP’s low and medium 
categories was increased from -1 to 0 to better reflect the 
elevated risk warning in Aqueduct. 

RAW VALUE RISK CATEGORY SCORE

<-5 Low 0–1

-5–0 Low–medium 1–2

0–1 Medium–high 2–3

1–5 High 3–4

>5 Extremely high 4–5
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3.11 Unimproved/No Drinking Water 3.11.1 DESCRIPTION
Unimproved/no drinking water reflects the percent-
age of the population collecting drinking water from an 
unprotected dug well or spring, or directly from a river, 
dam, lake, pond, stream, canal, or irrigation canal (WHO 
and UNICEF 2017). Specifically, the indicator aligns with 
the unimproved and surface water categories of the Joint 
Monitoring Programme (JMP)—the lowest tiers of drink-
ing water services.  Higher values indicate areas 
where people have less access to safe drinking 
water supplies.  

3.11.2 CALCULATION
Data for this indicator come from the 2015 drinking water 
access rates published by JMP (WHO and UNICEF 2017). 
The statistics from JMP’s “at least basic” and “limited” 
fields are summed to represent the percentage of the 
population with access to improved drinking water. The 
improved rate is then inverted into the unimproved/no 
access rate by subtracting improved from 100 percent. 
This is done for the national, rural, and urban averages 
in each country. The national average is used to fill in any 
missing rural or urban averages. 

The unimproved/no access rate is matched to each Aque-
duct geometry (intersect of states, HydroBASIN 6, and 
aquifers; see 4.1) using the International Organization for 
Standardization (ISO) codes provided by the Database of 
Global Administrative Areas (GADM) (“GADM Metadata” 
n.d.). 

ADDITIONAL 
DATA 
SOURCE

INPUT SPATIAL 
RESOLUTION

INPUT TEMPORAL 
RESOLUTION

INPUT 
TEMPORAL 
RANGE

SOURCE

Urban Extents 30 arc seconds Annual 2010 van Huijstee 
et al. (2018)

Gridded 
Population 30 arc seconds Annual 2010 van Vuuren 

et al.  (2007)

GENERAL:

Name Unimproved/No Drinking Water

Subgroup Regulatory and reputational risk

Risk element

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Annual baseline

SOURCE:

Spatial resolution Country (rural/urban)

Temporal resolution Annual

Temporal range 2015

E X TRA:

Partner organization(s) JMP

Date of publication 2017

RISK HAZARD E XPOSURE VULNERABILITY

= X X



TECHNICAL NOTE  |  July 2019  |  29

Aqueduct 3.0: Updated Decision-Relevant Global Water Risk Indicators

Rural and urban populations are calculated for each 
Aqueduct geometry. Rural and urban populations come 
from a gridded 2010 population data set produced by the 
Netherlands Environmental Assessment Agency (PBL) 
(van Vuuren et al. 2007). The gridded population data set 
is parsed into rural and urban populations using a 2010 
urban extent data layer (van Huijstee et al. 2018) and then 
summed by Aqueduct geometry. 

The rural and urban unimproved/no access rate is mul-
tiplied by the rural and urban populations, respectively, 
to find the number of people with unimproved/no access 
to drinking water in each Aqueduct geometry. The rural 
and urban totals are then summed and aggregated to the 
HydroBASIN 6 scale, along with total population. Finally, 
the raw score—the weighted percentage of population 
with unimproved/no access per HydroBASIN 6—is 
calculated:

IN WHICH,

UDW | Unimproved/no drinking water raw value in [-]

rrural | Rural unimproved/no access to drinking water rate in [-]

rurban | Urban unimproved/no access to drinking water rate in [-]

poprural | Rural population in [number of people]

popurban | Urban population in [number of people]

poptot | Total population in [number of people]

3.11.3 CONVERSION TO RISK CATEGORIES
The risk thresholds are based on Aqueduct 2.1 (Gassert et 
al. 2014).

RAW VALUE RISK CATEGORY SCORE

<2.5% Low 0–1

2.5–5.0% Low–medium 1–2

5.0–10.0% Medium–high 2–3

10.0–20.0% High 3–4

>20.0% Extremely high 4–5

The raw values are remapped to a 0–5 scale using the 
following equation:

Where r is the raw indicator value and score is the indicator 
score [0–5].

3.11.4 LIMITATIONS
The unimproved/no drinking water indicator is presented 
at a finer resolution than originally published by JMP 
under the assumption that access rates among rural and 
urban communities are consistent throughout a country. 
The methodology fails to account for regional and local 
differences in access within countries. 
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3.12 Unimproved/No Sanitation 3.12.1 DESCRIPTION
Unimproved/no sanitation reflects the percentage of the 
population using pit latrines without a slab or platform, 
hanging/bucket latrines, or directly disposing human 
waste in fields, forests, bushes, open bodies of water, 
beaches, other open spaces, or with solid waste (WHO 
and UNICEF 2017). Specifically, the indicator aligns with 
JMP’s unimproved and open defecation categories—
the lowest tier of sanitation services. Higher values 
indicate areas where people have less access to 
improved sanitation services.  

3.12.2 CALCULATION
Data for this indicator come from the 2015 sanitation 
access rates published by JMP (WHO and UNICEF 2017). 
Statistics from JMP’s “at least basic” and “limited” fields 
are summed to represent the percentage of the population 
with access to improved sanitation. The improved rate 
is then inverted into the unimproved/no access rate by 
subtracting improved from 100 percent. This is done for 
the national, rural, and urban averages in each country. 
The national average is used to fill in any missing rural or 
urban averages. 

The unimproved/no access rate is matched to each Aque-
duct geometry (intersect of states, HydroBASINS 6, and 
aquifers; see 4.1) using the International Organization for 
Standardization (ISO) codes provided by GADM (“GADM 
Metadata” n.d.). 

Rural and urban populations are calculated for each 
Aqueduct geometry. Rural and urban populations come 
from a gridded 2010 population data set produced by PBL 
(van Vuuren et al. 2007). The gridded population data set 
is parsed into rural and urban populations using a 2010 
urban extent data layer (van Huijstee et al. 2018), and 
then summed by Aqueduct geometry.

ADDITIONAL 
DATA 
SOURCE

INPUT SPATIAL 
RESOLUTION

INPUT TEMPORAL 
RESOLUTION

INPUT 
TEMPORAL 
RANGE

SOURCE

Urban Extents 30 arc seconds Annual 2010 van Huijstee 
et al. (2018)

Gridded 
Population 30 arc seconds Annual 2010 van Vuuren 

et al.  (2007)

GENERAL:

Name Unimproved/No Drinking Water

Subgroup Regulatory and reputational risk

Risk element

RESULTS:

Spatial resolution Hydrological sub-basin (HydroBASINS 6)

Temporal resolution Annual baseline

SOURCE:

Spatial resolution Country (rural/urban)

Temporal resolution Annual

Temporal range 2015

E X TRA:

Partner organization(s) JMP

Date of publication 2017

RISK HAZARD E XPOSURE VULNERABILITY

= X X
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The raw values are remapped to a 0–5 scale using the 
following equation:

Where r is the raw indicator value and score is the indicator 
score [0–5].

3.12.4 LIMITATIONS
Unimproved/no sanitation is presented at a finer reso-
lution than is originally published by JMP under the 
assumption that access rates among rural and urban com-
munities are consistent throughout a country. The meth-
odology fails to account for regional and local differences 
in access within countries. 

The rural and urban unimproved/no access rate is 
multiplied by the rural and urban populations, respec-
tively, to find the number of people with unimproved/
no access to sanitation in each Aqueduct geometry. The 
rural and urban totals are then summed and aggregated 
to the HydroBASINS 6 scale, along with total population. 
Finally, the raw score—the weighted percentage of popu-
lation with unimproved/no access per HydroBASINS 
6—is calculated:

 

IN WHICH,

USA | Unimproved/no sanitation raw value in [-]

rrural | Rural unimproved/no access to sanitation rate in [-]

rurban | Urban unimproved/no access to sanitation rate in [-]

poprural | Rural population in [number of people]

popurban | Urban population in [number of people]

poptot | Total population in [number of people]

RAW VALUE RISK CATEGORY SCORE

<2.5% Low 0–1

2.5–5.0% Low–medium 1–2

5.0–10.0% Medium–high 2–3

10.0–20.0% High 3–4

>20.0% Extremely high 4–5

3.12.3 CONVERSION TO RISK CATEGORIES
The risk thresholds are based on Aqueduct 2.1 (Gassert et 
al. 2014).
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3.13 Peak RepRisk Country ESG Risk Index 3.13.1 DESCRIPTION
The Peak RepRisk country ESG risk index quantifies 
business conduct risk exposure related to environmental, 
social, and governance (ESG) issues in the corresponding 
country. The index provides insights into potential finan-
cial, reputational, and compliance risks, such as human 
rights violations and environmental destruction. RepRisk 
is a leading business intelligence provider that specializes 
in ESG and business conduct risk research for companies, 
projects, sectors, countries, ESG issues, NGOs, and more, 
by leveraging artificial intelligence and human analysis 
in 20 languages. WRI has elected to include the Peak 
RepRisk country ESG risk index in Aqueduct to reflect 
the broader regulatory and reputational risks that may 
threaten water quantity, quality, and access. While the 
underlying algorithm is proprietary, we believe that our 
inclusion of the Peak RepRisk country ESG risk index, 
normally unavailable to the public, is a value-add to the 
Aqueduct community. The peak value equals the high-
est level of the index in a given country over the last two 
years. The higher the value, the higher the risk 
exposure.

3.13.2 CALCULATION
RepRisk screens over 80,000 media, stakeholder, and 
third-party sources daily to identify and analyze ESG-
related risk incidents and quantify them into the Peak 
RepRisk country ESG risk index (RepRisk n.d.). The 
results of the screening process are delivered to the 
RepRisk team of analysts, who are responsible for curat-
ing and analyzing the information. They hand select the 
items, give each risk incident a score (based on severity, 
source, and novelty), and write a risk summary. Before the 
risk incident is published, a senior analyst runs a quality 
check to ensure that the process has been completed in 
line with RepRisk’s strict, rules-based methodology. After 
the senior analyst has given her or his approval, the final 
step in the process, the quantification of the risk, is per-
formed through data science. The Peak RepRisk country 
ESG risk index takes into consideration the impact of a 
country’s risk incidents within the last two years and the 
average of a country’s Worldwide Governance Indica-
tors. The data used in Aqueduct 3.0 cover October 2016 
through October 2018. To learn more about RepRisk, 
please visit https://www.reprisk.com/our-approach or 
contact RepRisk.

GENERAL:

Name Peak RepRisk Country ESG Risk Index

Subgroup Regulatory and reputational risk

Risk element

RESULTS:

Spatial resolution Country

Temporal resolution Annual baseline

SOURCE:

Spatial resolution Country

Temporal resolution Annual

Temporal range 2016–18

E X TRA:

Partner organization(s) RepRisk

Date of publication 2018

RISK HAZARD E XPOSURE VULNERABILITY

= X X
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3.13.3 CONVERSION TO RISK CATEGORIES
The risk thresholds are based on guidance from RepRisk 
(RepRisk n.d.).

4. GROUPED AND OVERALL WATER RISK
After calculating the 13 indicators and converting them 
to a uniform 0–5 scale, we can calculate the grouped and 
overall water risks (composite indices). See Figure 1 for an 
overview of the groups. 

4.1 Geometries
Each of the 13 indicators is calculated at one of three 
different spatial scales: hydrological sub-basin, country, 
or groundwater aquifer. See “results: spatial resolution” 
in the summary table of each indicator. To combine the 
indicators into one framework, we take the union of the 
three geometries.  The resulting geometries are a unique 
combination of a hydrological basin, groundwater aqui-
fers, and an administrative boundary. 

4.2 Weighted Aggregation
The subgroups (physical risk quantity, physical risk qual-
ity, and regulatory and reputational risk) and overall risks 
are calculated by taking a weighted average of the indica-
tors that belong to each subgroup. 

Exposure to water-related risks varies with the charac-
teristics of water users. To obtain aggregated water risk 
scores, users can modify the weight of each indicator to 
match their exposure to the different aspects of water risk. 
There are five weights, or descriptors of relevance, on a 
base 2 exponential scale. This is preferred over a linear 
scale because of the human tendency to categorize inten-
sity by orders of magnitude of difference (Triantaphyllou 
2010). Users can also exclude indicators completely from 
aggregation. See Table 2 for an overview of the weights.

RAW VALUE RISK CATEGORY SCORE

<25% Low 0–1

25–50% Low–medium 1–2

50–60% Medium–high 2–3

60–75% High 3–4

>75% Extremely high 4–5

The raw values are remapped to a 0–5 scale using the 
following equation:

Where r is the raw indicator value and score is the indicator 
score [0–5].
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Users have three options for the weighting scheme: 
default, industry-specific, or custom.

Default weighting scheme

To determine a default set of indicator weights, we used 
input from six staff water experts following the principles 
of the Delphi technique. This technique uses a series of 
intensive questionnaires interspersed with controlled 
opinion feedback to obtain the most reliable consensus of 
opinion from a group of experts (Rowe and Wright 1999). 
The Delphi technique is intended for use in judgment situ-
ations; that is, ones in which pure model-based statistical 
methods are not practical or possible because of the lack 
of appropriate historical data, and thus some form of 
human judgment input is necessary (Dalkey and Helmer 
1963). The lack of consistent information on exposure to 
water risks and the subjective nature of indicator weights 
made this technique an ideal fit.  The results of the default 
weighting scheme can be found in the first column of 
Table 3. 

Industry-specific weighting scheme

Additionally, we developed preset weighting schemes for 
nine industry sectors on the basis of information provided 
in corporate water disclosure reports and input from 
industry experts to reflect the risks and challenges faced 
by each water-intensive sector. For each industry, we 
modified the default indicator weights on the basis of the 

relative importance of each indicator to the industry using 
information disclosed by companies on their exposure 
to, and losses from, water-related risks. To validate the 
industry-sector preset weighting schemes, we presented 
preliminary weighting schemes to industry representa-
tives from the nine sectors and solicited feedback on the 
relative importance of each indicator for their sector. The 
results can be found in Table 3. 

Custom weighting scheme

In the online tool, users can specify their own custom 
weighting scheme.

Using the weighting schemes, grouped water risk scores 
can be calculated. The relative weight of each indicator is 
illustrated in Figure 7. The definition for each subgroup is 
listed below:

Physical Risk Quantity 

Physical Risk Quantity measures risk related to too little 
or too much water by aggregating all selected indicators 
from the physical risk quantity category. Higher values 
indicate higher water quantity risks.

Physical Risk Quality 

Physical Risk Quality measures risk related to water that 
is unfit for use by aggregating all selected indicators from 
the Physical Risk Quality category. Higher values indicate 
higher water quality risks.

Regulatory and Reputational Risk 

Regulatory and Reputational Risk measures risk related 
to uncertainty in regulatory change, as well as conflicts 
with the public regarding water issues. Higher values 
indicate higher regulatory and reputational water risks.

Finally, the three grouped water risk scores can be used 
to determine the overall water risk score. The sums of the 
weights are used to calculate the relative contribution of 
each group.

Overall Water Risk

Overall Water Risk measures all water-related risks, 
by aggregating all selected indicators from the Physical 
Risk Quantity, Physical Risk Quality, and Regulatory 
and Reputational Risk categories. Higher values indicate 
higher water risk.  

Table 2  |  �Industry or User Relevance Weights and  
Their Descriptions

LEGEND WEIGHT INTERPRETATION

No weight 0 Not relevant 

Very low 0.25 Represents very low relevance to 
the industry or user

Low 0.5 Represents low relevance to the 
industry or user

Medium 1 Represents medium relevance to 
the industry or user

High 2 Represents high relevance to the 
industry or user

Very high 4 Represents very high relevance to 
the industry or user

Source: WRI.
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Table 3  |  �Industry or User Relevance Weights and Their Descriptions

Source: WRI.

Default Agriculture Chemicals Construction 
Materials

Electric 
Power

Food and 
Beverage Mining

Oil 
and 
Gas

Semiconductor Textile

PH
YS

IC
AL

 R
IS

K 
QU

AN
TI

TY
 

1 Baseline water 
stress 4 4 2 2 4 4 2 1 2 2

2 Baseline water 
depletion 4 4 2 2 4 4 2 1 2 2

3 Interannual 
variability 0.5 2 1 2 1 1 2 1 2 2

4 Seasonal 
variability 0.5 0.5 1 0.5 2 0.5 1 0.5 1 0.5

5 Groundwater 
table decline 4 4 2 2 0.5 4 2 1 2 1

6 Riverine flood 
risk 1 1 4 1 2 0.5 4 1 1 1

7 Coastal flood 
risk 1 1 4 1 4 0.5 4 4 1 2

8 Drought risk 2 4 2 1 4 2 4 0.5 1 1

PH
YS

IC
AL

 R
IS

K 
QU

AL
IT

Y 9
Untreated 
connected 
wastewater

2 1 2 1 0.25 2 0.5 0.25 4 4

10
Coastal 
eutrophication 
potential

1 4 0.25 0.5 1 2 0.25 0 2 1

RE
GU

LA
TO

RY
 A

ND
 R

EP
UT

AT
IO

NA
L R

IS
K 11 Unimproved/no 

drinking water 2 2 2 1 0.25 1 4 4 1 2

12 Unimproved/no 
sanitation 2 2 2 1 0.25 1 4 4 1 2

13
Peak RepRisk 
country ESG 
risk index

0.5 0.25 2 0.5 0.25 2 4 4 2 4
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Figure 7  |  �Indicator Weights per Industry

Notes: Weights are based on data availability. Masked or NoData values are excluded from the aggregated weighting. 
Please see the online tool for the results. The data are also available for download.
Source: WRI.
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5. LIMITATIONS
Not every aspect of water risk has usable global data sets 
enabling it to be incorporated into our framework. Certain 
important elements are partially missing from the frame-
work, such as water management and governance.18

The local social dimensions of water risks are not incorpo-
rated into this framework and database. Policy, regulation, 
and response to water crises are paramount in estimating 
water risks and fully understanding their impacts. In the 
end, each region or location’s ability to cope with water-
related issues will affect its water risk. 

Several limitations are associated with the framework 
(composite index) approach. First, it requires mapping the 
indicators to comparable (0–5) scale, thereby losing infor-
mation such as absolute values. The second limitation, 
linked to the first, is that we combined data with various 
spatial and temporal resolutions and ranges into a single 
framework. Third, there are only two and three indica-
tors in the quality and regulatory and reputational groups 
respectively. This makes these groups sensitive to errors 
in the underlying data. We provide industry and custom 
weighting to mitigate this limitation, but this requires the 
user to understand the data.  The framework’s water qual-
ity indicators do not reflect the full range of water quality 
threats but focus on nutrient pollution. The framework 
does not endorse framing water-quality solutions solely 
around coastal eutrophication or municipal wastewater. A 
fourth limitation of the framework approach is the mixing 
of risk types. The framework is inconsistent in including 
the exposure and vulnerability layers for all indicators. 

In addition to the limitations of the framework approach, 
each indicator comes with its own limitations. For the 

indicator-specific limitations, please see the indicator 
sections above and the associated literature. Since many 
of the indicators rely on the PCR-GLOBWB 2 hydrologi-
cal model and HydroBASINS 6 (hydrological sub-basins), 
some of these specific limitations are copied below. 

Coastal sub-basins and islands in HydroBASINS 6 are 
often grouped for various reasons explained in Lehner et 
al. (2008). This grouping is coarse and results in inaccura-
cies, primarily when water demand can be satisfied using 
remote water supply. 

PCR-GLOBWB 2 has no means to model interbasin trans-
fer. Interbasin transfer happens when demand in one sub-
basin is satisfied with supply from another sub-basin that 
is not upstream. Many major metropolitan areas source 
their water from adjacent sub-basins. Thus, baseline water 
stress in a given sub-basin may at times appear worse 
than it is where interbasin transfers are available to meet 
demand in that catchment. Alternatives to the moving 
window size and regression method used to process the 
PCR-GLOBWB 2 results could not be assessed due to the 
lack of validation data. 

Direct validation of the aggregated grouped water risks 
and overall water risk is not possible. The perception of 
water risk is subjective, and robust validation methods for 
multi-indicator frameworks are unavailable. 

It is crucial to understand what the Aqueduct 3.0 frame-
work and database can and cannot do. Like version 2.1, 
Aqueduct 3.0 is tailored to comparing regions on a larger 
scale. It has limited application at a local level. The pre-
sented results should therefore be used as a prioritization 
tool, after which deeper dive assessments should be used 
to understand local conditions with greater accuracy. 
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WATER CONSUMPTION

WATER WITHDRAWALS

WATER RESOURCES
(e.g., river, aquifer, lake, ocean)

RETURN FLOWS

APPENDIX A: DEMAND, WITHDRAWAL, AND 
RETURN FLOW
This appendix describes the hydrological terminology used in PCR-GLOBWB 2. 
An overview is shown in Figure A1. PCR-GLOBWB 2 determines water demand. 
Withdrawal is demand limited by available water. 

Withdrawal consists of two components: Consumptive withdrawal and 
nonconsumptive withdrawal. Gross withdrawal refers to consumptive plus 
nonconsumptive withdrawal.  Net withdrawal refers to only the consumptive 
withdrawal. 

The nonconsumptive withdrawal will return to the water body, usually down-
stream, and is also referred to as return flow. 

APPENDIX B: GEOGRAPHIC CONVERSION TABLE
Table B1 is intended to provide a quick and approximate sense of scale. 

Figure A1  |  �Schematic of Demand, Gross and Net 
Withdrawal, and Return Flow

Table B1  |  �Common Arc Lengths

Source: WRI.

Source: WRI.

ARC LENGTH DECIMAL 
DEGREES

DISTANCE AT 
EQUATOR (KM)

APPROXIMATE 
DISTANCE AT 

EQUATOR (KM)

360 arc degrees 360 40,030.17 40,000

1 arc degree 1 111.19 110

30 arc minutes 0.5 55.60 55

5 arc minutes 0.08333 9.27 10

1 arc minute 0.016667 1.85 2

30 arc seconds 0.008333 0.93 1

15 arc seconds 0.004167 0.46 .5
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APPENDIX C: PCR-GLOBWB 2
Baseline water stress, baseline water depletion, interannual variability, seasonal 
variability, groundwater table decline, and elements of the flood risk indicators 
are all based on the PCRaster Global Water Balance 2 model (PCR-GLOBWB 2) 
(Sutanudjaja et al. 2018). 

This appendix covers the basic model structure of PCR-GLOBWB 2 and the set-
tings used for the Aqueduct run.

For baseline water stress, baseline water depletion, interannual variability, and 
seasonal variability we used a setup with default groundwater configuration. We 
will refer to this run as the default PCR-GLOBWB 2 run. 

For the groundwater table decline indicator, we used a setup of PCR-GLOBWB 2 
with an advanced representation of groundwater based on MODFLOW. We will 
refer to this setup as the PCR-GLOBWB 2 + MODFLOW run. 

Digital Elevation Model
The starting point of almost any hydrological model and analysis is a digital 
elevation model (DEM). The DEM will determine the runoff direction; that is, the 
way the water flows. Aqueduct uses the same DEM as PCR-GLOBWB 2 and is 
a combination of the 30 × 30 arc second HydroSheds data (Lehner et al. 2008) 
with GTOPO30 (Gesch et al. 1999) and Hydro1k (Verdin and Greenlee 1996).  Lakes 
and wetlands from the Global Lakes and Wetlands Database (GLWD) (Lehner 
and Döll 2004a) are extracted. Finally, reservoirs and dams from the Global 
Reservoir and Dam (GRanD) database have been used (Lehner et al. 2011). The 
result is a hydrologically corrected data set of elevation, resampled to the PCR-
GLOBWB resolution of 5 × 5 arc minutes (approximately 10 km at the equator).

Local Drainage Direction
The local drainage direction, or the way water flows from one grid cell to the 
next, is derived from the DEM and assumes a strictly convergent flow. This 
means that in PCR-GLOBWB 2 and Aqueduct, bifurcations and river deltas are 
modeled as one stream instead of splitting rivers. 

Model Structure
PCR-GLOBWB 2 is a grid-based, modular global hydrological model. The world 
is represented by a 4,320 × 2,610 grid with a resolution of 5 × 5 arc minutes. For 
each of these cells, the model contains the following modules:

▪▪ Meteorological forcing 
▪▪ Land surface 
▪▪ Groundwater 
▪▪ Surface water routing 
▪▪ Irrigation and water use 

See Figure C1 for a schematic representation of the model. 

Meteorological forcing module
To model key weather elements that affect hydrology, the meteorological forc-
ing of PCR-GLOBWB 2 uses daily time series of spatial fields of precipitation, 
temperature, and reference evaporation. 

The default run is forced using data from two data sources: WATCH for the 
period 1960–76 and WATCH Era Interim (WFDEI) to extend the analysis to 2014 
(Weedon et al. 2014). 

Reference evapotranspiration is calculated using Penman-Monteith, according 
to the FAO guidelines (Allen et al. 1998).

The PCR-GLOBWB 2 + MODFLOW run is forced using combined Climatic 
Research Unit (CRU) and Era-Interim (Harris et al. 2014; Dee et al. 2011). Although 
the model ran for 1959–2015, only the results for 1990–2014 have been used to 
calculate the groundwater table decline indicator (Verdin and Greenlee 1996).

LAND SURFACE MODULE
This is the central module of PCR-GLOBWB 2 and connects directly to all other 
modules. It consists of multiple vertically stacked layers: canopy, snow, soil layer 
1 (S1), and soil layer 2 (S2). See Figure C1. There are vertical fluxes between the 
stacked layers (e.g., S1 to S2 and vice versa), as well as with the climate forcing 
module (e.g., precipitation and evaporation) and the groundwater module (e.g., 
S2 to groundwater). Furthermore, there are horizontal fluxes to the runoff mod-
ule. Within each grid cell, subgrid variability is modeled using a land-use class 
approach. This means that each grid cell is assigned a fraction of four land-use 
classes:

▪▪ Tall natural vegetation 
▪▪ Short natural and nonnatural (rainfed crops) vegetation
▪▪ Nonpaddy-irrigated crops
▪▪ Paddy-irrigated crops (e.g., wet rice)

For instance, a grid cell might consist of 20 percent tall natural vegetation, 25 
percent short vegetation, 40 percent nonpaddy-irrigated crops, and 15 percent 
paddy-irrigated crops (total 100 percent). Soil and vegetation parameters are 
obtained for each class and for each grid cell. Hence the soil and vegetation 
conditions are spatially distributed. 

The Global Land Cover Characteristics Data Base, version 2.0 (“GLCC 2.0” 2010) 
and land surface parameter data set (Hagemann 2002) are used to assign the 
four land-use classes to each 5 arc minute grid cell as well as obtain a few soil 
and vegetation parameters.

For each of the four land-use classes and for each soil layer (S1 and S2), the 
remaining soil parameters are defined using FAO’s Digital Soil Map of the World 
(Nachtergaele et al. 2009) and the WISE data set on global soil properties 
(Batjes 2012). 

Finally, additional monthly vegetation properties, including leaf area index (LAI) 
and crop factors, are derived from the MIRCA 2000 data set (Portmann et al. 
2010) and the Global Crop Water Model (Siebert and Döll 2010). 

For each of the four land-use classes, the following evaporative fluxes are 
defined: 

▪▪ Interception evaporation
▪▪ Bare soil evaporation
▪▪ Snow sublimation
▪▪ Vegetation-specific transpiration
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Figure C1  |  �PCR-GLOBWB 2 Schematic Overview

Note: “Schematic overview of a PCR-GLOBWB 2 cell and its modeled states and fluxes. S1, S2 (soil moisture storage), S3 (groundwater storage), Qdr (surface runoff—from rainfall and snowmelt), Qsf 
(interflow or stormflow), Qbf (baseflow or groundwater discharge), and Inf (riverbed infiltration from to groundwater). The thin red lines indicate surface water withdrawal, the thin blue lines ground-
water abstraction, the thin red dashed lines return flows from surface water use, and the thin dashed blue lines return flows from groundwater use surface. For each sector, withdrawal − return 
flow = consumption. Water consumption adds to total evaporation. In the figure, the five modules that make up PCR-GLOBWB 2 are portrayed on the model components” (Sutanudjaja et al. 2018).
Source: Based on raw data from Sutanudjaja et al. (2018), modified/aggregated by WRI. 
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Another main building block in the land surface model is runoff and infiltration 
modeling. There are two runoff components in the land surface module: (1) 
direct runoff from soil layer 1 combined with snowmelt from the snow layer and 
(2) stormflow19 runoff from soil layer 2.  

Direct and stormflow runoff are determined by excess infiltration according to 
the advanced ARNO scheme approach (Todini 1996; Hagemann and Gates 2003). 
This scheme determines which fraction will transfer vertically (infiltration) or 
horizontally (runoff). 

Groundwater module
For the default setup, the groundwater module calculates groundwater storage 
dynamics subject to recharge and capillary rise (calculated by the land surface 
module), groundwater discharge (Qbf) and riverbed infiltration (Inf). Groundwa-
ter discharge depends on a linear storage-outflow relationship (Qbf = S3/J) in 
which the proportionality constant J is calculated following Kraijenhoff van de 
Leur (1958). Riverbed infiltration occurs only in the case that Qbf  becomes 0 by 
groundwater withdrawal. Under persistent groundwater withdrawal (calculated 
with the irrigation and water use module), the groundwater storage S3 is al-
lowed to become negative. In this case, the part of the withdrawn groundwater 
in excess of the input (recharge and riverbed infiltration) is seen as nonrenew-
able groundwater withdrawal leading to groundwater depletion.  

For the groundwater run, we use a groundwater flow model based on MODFLOW 
to simulate spatiotemporal groundwater heads (Harbaugh et al. 2000). This is a 
one-way coupling in which PCR-GLOBWB 2 is first run with the standard ground-
water module (reservoir S3 with only vertical fluxes) to yield time series of net 
groundwater recharge (recharge − capillary rise) and surface water levels. 
These fluxes and inputs are subsequently used to force the groundwater flow 
model (see, e.g., Sutanudjaja et al. 2011; and de Graaf et al. 2015, 2017). 

Irrigation and water use module
Water demand and withdrawal are fully coupled, which means that demand 
and withdrawal influence the state of other model components and vice versa. 
PCR-GLOBWB 2 determines demand and withdrawal for four sectors: domestic, 
industrial, irrigation, and livestock. See Appendix A for a description of demand, 
withdrawal, and return flow.

For each sector, gross and net demand is calculated. Gross demand consists of 
consumptive and nonconsumptive demand, whereas net demand consists of 
only consumptive demand. 

Irrigation demand
Irrigation water demand is determined using monthly irrigated areas per grid 
cell, crop phenology, and crop factors, which are based on FAOSTAT, MIRCA 2000, 
and the Global Crop Water Model, respectively (“FAOSTAT” 2012; Portmann et al. 
2010; Siebert and Döll 2010). Although the total irrigated area per cell varies over 
time, the ratio of paddy/nonpaddy irrigation is kept constant due to limitations in 
the input data. 

The irrigation water requirements are derived from FAO guidelines (Allen et al. 
1998; Doorenbos and Pruitt 1977). Paddy and nonpaddy crops are calculated 
separately and are both fully coupled with changes in surface and groundwater 
balance. Evapotranspiration is dynamically modeled using soil, vegetation, 
climate, and crop states. For more information, see Wada et al. (2014a).

The process is illustrated in Figure C2. Associated input data sets are shown in 
Table C1. 

Figure C2  |  �Irrigation Water Demand Schematic

Source: Based on raw data from Wada et al. 2011a, modified/aggregated by WRI. 
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Calendar
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Country

(irr.6)
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Evapotranspiration (ET)
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1960–2014
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5 arc minutes
1960–2014
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1960–2014
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FROM MODEL
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Table C1  | Data Used to Determine Irrigation Water Demand in PCR-GLOBWB 2 run for Aqueduct 3.0

Figure C3  | Water Use Intensities Schematic

CODE DESCRIPTION INPUT SPATIAL 
RESOLUTION

INPUT 
TEMPORAL 
RESOLUTION

INPUT 
TEMPORAL 
RANGE

SOURCE

Irr.1 Irrigated area 5 arc minutes Monthly 2000
MIRCA 2000

(Portmann et al. 2010)

Irr.2 Historical growth of irrigated areas Country Annual 1960–2014
FAO

(“FAOSTAT” 2012)

Irr.3 Crop coefficient, rooting depth N/A N/A N/A
Global Crop Water Model

(Siebert and Döll 2010)

Irr.4 Crop factor, crop calendar 5 arc minutes Monthly 2000
MIRCA 2000

(Portmann et al. 2010)

Irr.5 Irrigation efficiency Country N/A Various Rohwer et al. (2007)

Irr.6 Crop evapotranspiration 5 arc minutes Daily 1960–2014 From PCR-GLOBWB 2 model

Note: The code corresponds to Figure C2.
Source: WRI.

Industrial demand
Industrial demand captures water demand for manufacturing, power generation, 
and other industrial processes. 

Before jumping into the calculation of industrial water demand, it is important to 
understand the definition of water use intensities. Water use intensities are used 
to derive time series (1960–2014) from a reference data set. 

Water use intensities are calculated using four socioeconomic data sets: 

▪▪ GDP
▪▪ Electricity production
▪▪ Energy consumption
▪▪ Household consumption

All data sets are annually per country for the period 1960–2014. The method to 
determine water use intensities from these data sets is explained in Wada et 
al. (2011a). The approach is depicted in Figure C3. The associated input data set 
appears in Table C2.

Source: Based on raw data from Wada et al. 2011a, modified/aggregated by WRI. 

(dom_ind.1)
GDP

Country
1960–2014

(dom_ind.2)
Electricity, energy, 

household consumption
Country
1960–2014

Water use intensities
Country

1960–2014
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The water use intensities are then combined with a reference industrial water 
withdrawal data set to obtain time series (see Figure C4). The results are spa-
tially disaggregated using nighttime lights to get gross industrial water demand 

Table C2  | Data Used to Determine Water Use Intensities

Figure C4  | Industrial Water Demand Schematic

CODE DESCRIPTION INPUT SPATIAL 
RESOLUTION

INPUT TEMPORAL 
RESOLUTION

INPUT TEMPORAL 
RANGE SOURCE

Dom_ind.1 GDP Country Annual 1960–2014 World Bank (n.d.)

Dom_ind.2 Electricity production, energy 
consumption, and household consumption Country Annual 1960–2014 UNEP (n.d.)

Note: The code corresponds to Figure C3.
Source: Wada et al. 2011a.

at 5 arc minute resolution for the period 1960–2014. A precalculated recycle ratio 
per country, 1960–2014, based on the development of a country, is used to derive 
net industrial water demand from gross water demand. Industrial demand is 
assumed to be constant over a year due to data limitations.

Note: Water use intensities are calculated in the previous step. The associated data sets can be found in Table C3. 
Source: Based on raw data from Wada et al. 2011a, modified/aggregated by WRI. 

Gross Ind water demand
5 arc minutes
1960–2014

Net Ind water demand
5 arc minutes
1960–2014

(ind.3)
Recycling ratio

Country
1960–2014

(ind.1)
Nighttime lights
5 arc minutes

2015

(ind. 2)
Reference Ind. water 

withdrawal
5 arc minutes

2000

Water use intensities
Country

1960–2014
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Livestock demand
Daily livestock demand is determined by multiplying the total number of 
livestock per grid cell by a corresponding daily drinking water requirement 

Table C3  | Data Used for Industrial Water Demand

Figure C5  | Livestock Water Demand Schematic

CODE DESCRIPTION INPUT SPATIAL 
RESOLUTION

INPUT 
TEMPORAL 
RESOLUTION

INPUT 
TEMPORAL 
RANGE

SOURCE

Ind.1 Nighttime lights 0.01 arc degree Annual 2015 EOG and NOAA (n.d.)

Ind.2 Reference industrial water 
withdrawal 5 arc minutes Annual 2000

WWDR-II data set

(Shiklomanov 1997; WRI 
et al. 1998; Vörösmarty et 
al. 2005)

Ind.3 Recycling ratio Country Annual 1960–2014 Wada et al. (2011a)

Note: The code corresponds to Figure C4.
Source: WRI.

depending on temperature. Gridded livestock density for 1960–2014 is obtained 
by combining the gridded livestock densities of 2000 with historical livestock 
growth (see Figure C5). See Wada et al. (2014a) for full details.

Note: The associated input data sets can be found in Table C4.  
Source: Based on raw data from Wada et al. 2011a, modified/aggregated by WRI. 
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Domestic demand
Domestic demand includes water demand from households in both urban and 
rural areas. Domestic water demand per country 1960–2014 is calculated by 
combining the total country population 1960–2014 with the average per capita 
water use of a reference year. The reference data are turned into a time series 
by temporarily disaggregating using the water use intensities data. The water 
use intensities are the same as used for industrial demand and explained in the 
“Industrial demand” section above. 

Table C4  | Data Used to Determine Livestock Water Demand in PCR-GLOBWB 2 Run for Aqueduct 3.0

Figure C6  | Domestic Demand Schematic

CODE DESCRIPTION INPUT SPATIAL 
RESOLUTION

INPUT 
TEMPORAL 
RESOLUTION

INPUT 
TEMPORAL 
RANGE

SOURCE

Liv.1 Gridded global livestock density for cattle, 
buffalo, sheep, goats, pigs, and poultry 0.05 arc degrees Annual 2000 FAO

(Wint and Robinson 2007)

Liv.2 Historical growth of livestock Country Annual 1960–2014 FAO
(“FAOSTAT” 2012)

Liv.3 Daily drinking water requirements N/A N/A N/A Steinfeld et al. 2006

Liv.4 Air temperature 5 arc minutes Daily 1960–2014 From climate forcing, 
meteorological forcing module

Annual country demand data are then further processed using two other data 
sets:  (1) gridded population and (2) gridded air temperature. The result is 
gross water demand at 5 × 5 arc minute resolution, daily 1960–2014. Domestic 
demand is modeled as a function of daily air temperature. 

Net domestic demand is calculated by combining the gross demand with 
country-specific recycle ratios and with rural and urban access to water data 
(Figure C6).  For more details, see Wada et al. (2011a). 

Note: The code corresponds to Figure C5.
Source: WRI.

Note: The associated data sets can be found in Table C5.  
Source: Based on raw data from Wada et al. 2011a, modified/aggregated by WRI. 
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Sectoral withdrawal
Water withdrawal in PCR-GLOBWB 2 equals gross demand unless water is 
unavailable. If the latter is the case, the withdrawal is lowered to match available 
water, and sectoral withdrawals are proportionate to the sectoral gross demand.  
The available water is determined by pooling ground and surface water over 
abstraction zones. An abstraction zone is a 1 × 1 arc degree grid cell truncated 
by basin and country.20 

There are three “sources” to satisfy water demand within an abstraction zone: 
surface water, groundwater, and desalinated water. We assume that all the 
desalinated water is used first. The remaining demand is satisfied according to 
relative availability of surface and groundwater (renewable and fossil). There are 
exceptions for urban and irrigation areas where different allocation schemes are 
used (see Sutanudjaja et al. 2018).

Groundwater abstraction is further limited by pumping capacity, which is taken 
as groundwater withdrawal for the year 2000 as reported in IGRAC (n.d.). The 
year 2000 is taken as reference year and pumping capacities for other years 
estimated based on relative changes in total water demand, taking into account 
the trends of domestic and industrial water demand and irrigated area.

Surface water routing module
In the Aqueduct run of PCR-GLOBWB 2, surface water is routed using a kine-
matic wave approximation of the Saint-Venant equations with flow described 
using Manning’s equation. For more details and assumptions, see Sutanudjaja 
et al. (2018). 

Lakes and reservoirs are included in the Aqueduct run of PCR-GLOBWB 2, and 
their actual storage is dynamically updated in the model. The Global Reservoir 
and Dam (GRanD) and GLWD databases are used to obtain locations and char-
acteristics of reservoirs and lakes (Lehner and Döll 2004b; Lehner et al. 2011). For 
the Aqueduct run, lakes are modeled as broad crested weirs, and their outflow is 
modeled using a standard storage-outflow relationship. 

Reservoirs aim to pass an average discharge while maintaining a water level 
between minimum and maximum storage (Wada et al. 2014b). The area of lakes 
and reservoirs varies according to global volume-area relationships. All water 
bodies are susceptible to open water evaporation. 

The Aqueduct run of PCR-GLOBWB 2 uses a daily time step. The states of the dif-
ferent modules of the model—including net and gross sectoral withdrawal, river 
discharge, and so on—are reported on a monthly scale. 

For model validation, calibration, limitations, and discussion, see Sutanudjaja 
et al. (2018). The model setup files, input, intermediate, and result data can be 
found in our GitHub repo.

Table C5  | Data Used to Determine Domestic Water Demand

CODE DESCRIPTION INPUT SPATIAL 
RESOLUTION

INPUT 
TEMPORAL 
RESOLUTION

INPUT 
TEMPORAL 
RANGE

SOURCE

Dom.1 Population Country Annual 1960–2014 FAO
(“FAOSTAT” 2012)

Dom.2 Per capita water use Country Annual 2000 FAO 
(“AQUASTAT,” n.d.)

Dom.3 Air temperature 5 arc minutes Daily 1960–2014 From PCR-GLOBWB 2 model

Dom.4 Population, urban, rural 5 arc minutes Decadal, 
interpolated 1960–2014 IMAGE / HYDE

(Bouwman et al. 2006)

Dom.5 Recycling ratio Country Annual 1960–2014 Wada et al. (2011a)

Dom.6 Access to water for urban and 
rural Country Annual 1960–2014 UNEP

(n.d.)

Note: The code corresponds to Figure C6.
Source: WRI.
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APPENDIX D: DELTA SUB-BASINS
The underlying digital elevation models of PCR-GLOBWB 2 and HydroBASINS as-
sume a strictly convergent flow, which in some cases leads to erroneous results. 
Rivers will sometimes bifurcate, especially in flat delta areas. Available water 
resources and water withdrawal are pooled within each sub-basin.  Therefore, 
sub-basins that are part of the same delta need to be grouped and assumed to 
belong to a common hydrological unit.

The previous version of Aqueduct uses sub-basins derived from the Global 
Drainage Basin Database (GDBD) (Masutomi et al. 2009). By default, GDBD 
does not contain information about which basins were grouped. According 
to the author of GDBD, it is not possible to replicate the delta grouping using 
the HydroBASINS data set.  Therefore, additional information regarding the 67 
delta basins21 in GDBD was obtained directly from the authors and joined to the 
original database. 

The process of finding and grouping delta HydroBASINS includes a semiauto-
mated way to create a shortlist for potential delta sub-basins, and a manual step 
to ensure the correct classification. 

To classify HydroBASINS into delta regions, a spatial join was performed 
between HydroBASIN level 6 and GDBD with delta classifier information.  The 
HydroBASINS that intersect the GDBD delta basins are put on a shortlist for 
further inspection. 

The second step is to count the number of separate GDBD streams in each sub-
basin. Multiple streams are an indication for delta sub-basins. 

As a third step, each shortlisted delta sub-basin is manually checked by com-
paring the shortlisted sub-basins with all water bodies extracted from Open-
StreetMaps and the flow direction and flow accumulation of both HydroBASINS 
and PCR-GLOBWB 2 (OpenStreetMap contributors 2018; Lehner and Grill 2013; 
Sutanudjaja et al. 2018). 

In total, 196 HydroBASINS are grouped into 63 delta basins. Eighty-nine delta 
regions have been examined. A column containing delta information is added to 
the final Aqueduct database. 

ENDNOTES
1.	 We used time series of groundwater heads. Groundwater head is a measure of pressure and 

can be linked to groundwater tables. See the groundwater table decline indicator for more 
information.

2.	 See Appendix A for the terminology.

3.	 See Appendix A for the terminology.

4.	 This includes direct runoff, storm flow, base flow, and return flow. For more detail, see Ap-
pendix C.

5.	 Water that is being transported from one basin to another other than natural flow.

6.	 Using the World Eckert IV projection.

7.	 This corresponds to one 5 arc minute cell.

8.	 Sinks are the most downstream cells in a routing network. This can be an ocean or an inland 
lake (endorheic). We used the sinks as determined by PCR-GLOBWB 2.

9.	 Both near-real-time and historical assessments are possible future projects.

10.	 The irrigation withdrawal is especially sensitive to climate forcing and evapotranspiration 
algorithm limitations.

11.	 For instance, the value for available water in 2013 is calculated by fitting an OLS regression 
to the 2004–13 (10-year) available water data. Finally, we take the value of the regression 
function for the target year:  y = f(2013). 

12.	 Baseline water stress and baseline water depletion use a fraction approach. When the 
denominator is very close to zero, the value will be extremely high and is often based on only 
a few data points. Please see the indicator sections and the respective equations. 

13.	 Environmental flow requirements are implicitly considered in the thresholds. 

14.	 At 5x5 arc minute.

15.	 Our research partners at Deltares and Utrecht University ran the model for 1960–2014 but 
only 1990–2014 has been used to calculate the indicator. The reason is that groundwater 
development began to increase late 1980s and 1990s in some countries that use groundwater 
intensively. We assume this period to be representative of the current trend; however, further 
optimization might provide better insights as to the best range. Although this is different from 
some other indicators, we are consistently calculating baseline scores, thereby making it 
possible to aggregate various temporal ranges.

16.	 The vulnerability of people to floods is assessed as a binary condition: they are either flooded 
or they are not.

17.	 The vulnerability of people to floods is assessed as a binary condition: they are either flooded 
or they are not.

18.	 These elements are indirectly covered in the Regulatory and Reputational Risk group.

19.	 Or interflow.

20.	 Note that the default parametrization of PCRGLOWB 2 uses 30 arc minute instead of 1 arc 
degree abstraction zones for groundwater. In the Aqueduct run, both surface water and 
groundwater abstraction zones are 1 × 1 arc degree and truncated by basin and country.

21.	 Boolean classification. Sub-basin is delta or no delta.
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